
Graphene n-p junction in a strong magnetic field: A semiclassical study

Pierre Carmier,1 Caio Lewenkopf,2 and Denis Ullmo1,3

1LPTMS UMR 8626, Univ. Paris-Sud, 91405 Orsay Cedex, France
2Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil

3CNRS, 91405 Orsay Cedex, France
�Received 17 March 2010; revised manuscript received 10 May 2010; published 8 June 2010�

We provide a semiclassical description of the electronic transport through graphene n-p junctions in the
quantum Hall regime. A semiclassical approximation for the conductance is derived in terms of the various
snakelike trajectories at the interface of the junction. For a symmetric �ambipolar� configuration, the general
result can be recovered by means of a simple scattering approach, providing a very transparent qualitative
description of the problem under study. Consequences of our findings for the understanding of recent experi-
ments are discussed.
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Graphene is a two-dimensional carbon-based material
which, due to its remarkable electronic and mechanical prop-
erties as well as potential applications, has been the subject
of intense research activity in physics, chemistry, and mate-
rial sciences.1,2 At the origin of this interest is the observa-
tion that the electronic low-energy dynamics in graphene is
governed by a Hamiltonian very similar to that of the two-
dimensional relativistic Dirac equation. This has a number of
remarkable consequences, two of the most striking being an
anomalous quantum Hall effect3,4 and the existence of Klein
tunneling.5–7

Experiments where both quantum Hall physics in
graphene and Klein tunneling are at play were pioneered by
Williams et al.,8 who measured the conductance of graphene
n-p junctions in a high magnetic field in the quantum Hall
regime. This was possible due to the deposition of a metallic
topgate partially covering the graphene sheet. By indepen-
dently varying the applied top and backgate voltages the re-
sulting electrostatic potential creates negatively and posi-
tively doped regions in the graphene sample. In this way n-n,
p-p, and n-p junctions were produced. The two former did
not show any striking feature. In contrast n-p junctions,
where the transition from the electron region to the hole re-
gion of the sample has to take place through Klein tunneling,
showed a quite unexpected behavior. Conductance plateaus
at values G0 /2 and 3G0 /4 �G0=2e2 /h� were observed, at
odds with the sequence �2n+1�G0, n�Z, expected for the
quantum Hall effect in graphene. Other experimental groups
have observed these and other interesting plateaus in more
elaborated setups.9–11

These observations were explained by Abanin and
Levitov12 through a “quantum chaos hypothesis,” which can
be summarized as follows. At the interface between the n and
p regions of the junction, the electrons experience a succes-
sion of Klein tunneling and skipping-orbit like propagation.
It was suggested that the mode mixing caused by this mecha-
nism possibly leads the probability to be transmitted or re-
flected in a given mode to be perfectly “democratic.” The
Landauer-Büttiker formula for the conductance under this
hypothesis gives G=G0NnNp / �Nn+Np�, where Nn and Np are
the number of channels in the n and p regions. This simple
formula agrees with the observed conductance plateaus.

As already noted,12 this interpretation fails to provide a

complete explanation of the experimental findings. Indeed,
the quantum chaos hypothesis corresponds to the assumption
that the scattering matrix describing mode mixing along the
junction can be statistically modeled by random-matrix
theory. This hypothesis implies that the average scattering
matrix coefficients are equal. However, it also predicts uni-
versal conductancelike fluctuations,13,14 which are quite ro-
bust and could not be suppressed by adding disorder.15,16

Experiments show reasonably well-defined plateaus, but no
significant fluctuation amplitudes around a mean value. An
alternative approach17,18 showed that the edge boundary con-
ditions affect the valley polarization of the zero-energy Lan-
dau level. Clean edges produce new conductance plateaus in
the ballistic regime, however, not at the observed values.

The graphene n-p junction plateaus therefore remain an
experimental mystery, that we are not going to dispel here.
Our goal in this Rapid Communication will be to provide a
semiclassical analysis of the mode mixing at the edge of a
clean �ballistic� fully coherent n-p junction. In particular, we
want to address the question of whether the snakelike motion
at the interface can be the microscopic mechanism underly-
ing the quantum chaos hypothesis; we shall see that in spite
of what a naive classical intuition would suggest, the answer
is essentially negative.

Mode mixing depends on several system-specific features:
presence or absence of disorder, steepness of the potential
barrier, possible diffractive effects when the electrons transit
from their skipping orbit motion along the sample edges to
the snakelike motion along the junction interface, etc. To
specifically focus on the mixing occurring at the interface,
we consider the model sketched in Fig. 1: a perfectly clean
graphene sample, the edges of which match smoothly with a
steplike potential interface. The Landauer-Büttiker conduc-
tance G across the junction is expressed as

G = G0�
�,�

T�,�, �1�

where the sum runs over all the incoming skipping modes
� ,� �� is the valley index� in, for instance, the n region and
the T�,� are the corresponding transmission probabilities
across the junction, for which we present a semiclassical
description.
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It is useful to begin by analyzing what are the results
expected from a simple classical point of view. Let us call
Vn�0 and Vp�0 the electrostatic potential in the n and p
regions, respectively �we assume the chemical potential �
=0�, Bz the applied magnetic field, A the corresponding vec-
tor potential, and vF the Fermi velocity. In the interior of
either regions, electrons experience a cyclotronic motion of
opposite direction and of radius Rn,p= �Vn,p� / �eBzvF�. At the
sample edge, the classical trajectories follow the skipping
motion illustrated in Fig. 1 and can be characterized by the
angle at which they hit the boundary.

We call this angle �n for trajectories in the n region, and
�−�p for trajectories in the p region �as it turns out to be
more convenient to label the direction of �=p+eA�r�,
which is antiparallel to the velocity in the hole region�. Be-
tween two successive bounces, trajectories progress a dis-
tance Ln,p=2Rn,p sin �n,p along the edge. The motion is simi-
lar at the n-p interface, except that at each encounter with the
potential barrier there is a probability

T =
sin �n sin �p

cos2��n − �p

2
� �2�

to be transmitted from the electron side to the hole side �or
reciprocally� between two trajectories fulfilling the Snell-
Descartes relation

Rn cos �n = Rp cos �p. �3�

Let us consider an incoming mode �� ,�� from the n re-
gion. Semiclassically, the mode is built on a one-parameter
family of skipping trajectories corresponding to some fixed
�n

�,�. The different trajectories within the family are labeled
by the abscissa x0� �−Ln��n

�,�� ,0� at which they last bounce
before entering the interface region. The evolution of this set
of trajectories under the above classical dynamics can be
characterized by the probabilities un�x� and up�x� to emerge
at x on the electron side �with angle �n

�,�� or on the hole side
�with the corresponding angle given by Eq. �3��. If the width
L of the junction is significantly larger than Ln and Lp, it can
be shown that un�x� and up�x� converge both toward 1/2 ex-
ponentially quickly with the number of bounces on the junc-
tion. As a consequence, since whether a trajectory is trans-
mitted or reflected only depends on the side it emerges from
after the last scattering at the interface, the classical probabil-
ity of transmission is, for a large junction, given by the ratio
Lp / �Ln+Lp�. It should be stressed that this classical transmis-

sion probability, even if averaged on the angle �n
�,� specify-

ing the incoming mode, does not correspond to what a quan-
tum chaos hypothesis would require, namely, a probability
given by the proportion of available classical phase space on
each side of the junction.

Let us now turn to the description of the quantum trans-
mission. For the sake of definitiveness we discuss the case of
infinite mass boundary at the edge of the graphene sample.
We expect no qualitative differences for either armchair or
zigzag boundary conditions. Let us introduce the actions

Sn��n� = eBzRn
2��n −

sin 2�n

2
� , �4�

Sp��p� = − eBzRp
2�� − �p +

sin 2�p

2
� . �5�

Semiclassically, the edge modes in the n region are built,
within the leads, on the skipping trajectories bouncing on the
boundary with an angle ��,�

n fulfilling the quantization con-
dition

Sn��n
�,�� = 2���� − �/4� �6�

�again, �= 	1 is the valley index�. Note there is no �=0
level for �=+1.

We start our semiclassical discussion with the particularly
simple case of ambipolar junctions, namely, junctions such
that Vp=−Vn. In that situation, the Snell relation �Eq. �3��
tells us that �n=�p for any pair of angles, and therefore,
Ln��n�=Lp��p�. As a consequence, the different trajectories
within the family 	�n=�n

�,� , x0� �−Ln��n
�,�� ,0�
 follow a

completely independent history. The propagation of the cor-
responding amplitudes along the junction can be performed
for each of them separately and is obtained from the succes-
sive multiplications of two 2
2 unitary matrices. The first
one,

P = �e�i/��Sn��n�−i��/2�+i� 0

0 e�i/��Sp��p�+i��/2�+i� � �7�

with here �n=�p=�n
�,�, describes the propagation on the elec-

tron and hole sides between two interactions with the inter-
face. The 	� /2 are the Maslov phases originating from the
focal point met on these pieces of trajectory, and �=−�n is a
Berry phase. The second matrix describes the transmission
and reflection between electron and hole sides. It can be
expressed as �in a form not restricted to the ambipolar case�

D = � rnei�n tpei��n+�p�/2

tnei��p+�n�/2 rpei�p
� �8�

with rn=rp=−cos���n+�p� /2� /cos���n−�p� /2� and tn,p=
−i sin �n,p /cos���n−�p� /2�. Note the phases ei��n,p+�n,p�/2 can
be interpreted also as Berry phases. The transmission prob-
ability for a given trajectory is then given by T��n

�,� ,x0�
= ��0,1��PD�N�1,0�T�2 with N the integer part of �L
+ �x0�� /Ln, which therefore depends on x0. The total transmis-
sion for the mode �� ,�� is then obtained as T�,�
=Ln

−1�−Ln

0 dx0T��n
�,� ,x0�. The resulting conductance after sum-

mation on the modes �� ,�� is shown in Fig. 2.
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FIG. 1. �Color online� Scattering along a boundary intercalated
with a steplike n-p junction. The different symbols are explained in
the text.

CARMIER, LEWENKOPF, AND ULLMO PHYSICAL REVIEW B 81, 241406�R� �2010�

RAPID COMMUNICATIONS

241406-2



In the generic case of arbitrary Vn and Vp, a semiclassical
expression for the conductance can be derived from the
Fisher-Lee-Baranger-Stone equations19,20 relating the trans-
mission and reflection coefficients T�,� and R�,� to the
Green’s function G�r� ,r�� and the incoming mode ��,�

− �r��.
In our case the transmission can be written as

T�,� = �
y��0

dy�t�,�
† �r��vFxt�,��r�� �9�

with

t�,��r�� = − i��
y��0

dy�G�r�,r��vFx��,�
− �r�� . �10�

The same results holds for R�,� except that the integral on y�
should be taken for negative values of y� �i.e., in the electron
region�. The incoming mode is semiclassically expressed as

��,�
− �r� =

A�,�eikx
�,�x

�sin ��y��
�

�=	1
e�i/���S�,��y�−i���/4��e−i��/2���y�

ei��/2���y� �
�11�

with ��y� the angle ��0� such that y=Rn�cos �n
�,�

−cos ��y��, S�,��y���eBzRn
2 /2�	��y�−sin�2��y�� /2
, and the

normalization coefficient A�,�= �4vFRn sin �n
�,��−1/2. For the

Green’s function we take the semiclassical approximation
derived in Ref. 21 for the graphene Hamiltonian, properly
modified to account for Klein tunneling at the junction inter-
face. The semiclassical Green’s function is expressed as a
sum over all trajectories j joining r� to r�

Gsc�r�,r�;E� =
1

i�2�i�
�

j
� �

�=n,p
�

��,��

r�
����t�

�����



e�i/��Sj�r�,r��−i��/2��j+i�j

�Jj�r�,r���
Vj

��r���r��Vj
��r��†�r�� ,

�12�

where Sj is the action integral along the orbit j, Jj the stabil-
ity determinant, � j the Maslov index counting the focal
points met by the trajectory �counted negatively on the hole
side�, � j is a Berry phase equal to half of the angle of rotation

of the vector �=p+eA�r� �which is parallel to the velocity
on the electron side and antiparallel to it on the hole side�,
V+= 1

2
� 1

ei� �, V−= 1
2

� e−i�

−1 � with � the direction of �, and ��r�
=+1 or −1 depending on whether r is on the electron or the
hole side. The only difference introduced by the presence of
the potential barrier22 is that bounces on the interface, in-
dexed by �n,p, as well as transmission across it, indexed by
�n,p, are taken into account through the coefficients rn,p and
tn,p introduced in Eq. �8� �in the definition of which the
angles ���n,p,�n,p� are used�.

A typical skipping orbit fulfilling the quantization condi-
tion Eq. �6� is displayed in Fig. 1. The orbit is characterized
by the angle �� at which it arrives at the Poincaré section x
=L, the number of excursions mp on the hole side, and the
number of traversals k of the interface. The number of ex-
cursions on the electron side is then mn�mp ,���= ��W−L�
−2mpRp sin �p� / �2Rn sin �n�� with � · � the integer part and
L�=Rp�sin �p−sin ��� for transmission and Rn�sin �n
+sin ��� for reflection. The trajectory should also be charac-
terized by the ordering of the various excursions in the n and
p sides of the junction. However these various orderings will
correspond to the same amplitude, and therefore just contrib-
ute as a degeneracy factor given by ��mp ,k=2k��
= �

mp−1

k�−1 ��
mn�mp�+1

k�
� for reflection, and ��mp ,k=2k�+1�

= �
mp

k�
��

mn�mp�
k�

� for transmission. Performing the integral in Eq.
�10� in the stationary-phase approximation, we get

T�,� =
Rp

2Rn sin �n
�,��

−�T

�T

d�� cos ��T�,����� , �13�

R�,� =
1

2 sin �n
�,��

−�R

�R

d�� cos ��R�,����� �14�

with

T�,����� = �tn �
mp=0

Mp����

�− irne�i/��Sn��n
�,���mn�mp,���


�irpe�i/��Sp��p��mp�
k�

� tntp

rnrp
�k�

��mp,2k� + 1��2

,

�15�

50 100
Length of the interface

0

5

10

C
on

du
ct

an
ce

50 100
Length of the interface

0

0.2

0.4

0.6

0.8

1

T
ra

ns
m

is
si

on

50 100
Length of the interface

0

0.2

0.4

0.6

0.8

1

T
ra

ns
m

is
si

on

(b)(a) (c)

FIG. 2. �Color online� Left: conductance �in units of G0� as a function of the length of the interface L �in units of the magnetic length
lB=� / �eBz�� for the case of 13 edge channels �filling factor 7� in the ambipolar �thick black line� and generic �red dashed line� cases.
Evidently, no plateau in the conductance is reached in either cases. Middle and right: transmission of edge channels number 4 and 13, for
which the local-transmission probability in Eq. �2� is, respectively, T4=0.87 and T13=0.19, for semiclassical �thick black line� and classical
�red dotted line� dynamics. Substantial difference between both behaviors indicates strong influence of interferences between classical
trajectories.
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R�,����� = � �
mp=0

Mp����

�− irne�i/��Sn��n
�,���mn�mp,���+1


�irpe�i/��Sp��p��mp�
k�

� tntp

rnrp
�k�

��mp,2k���2

,

�16�

where Mp����= ��W−L�� / �2Rp sin �p��, �T=min��p ,�−�p�,
and �R=min��n

�,� ,�−�n
�,��. The corresponding curves for the

conductance in Eq. �1� are shown in Fig. 2.
A few comments are in order. First, we stress that in the

ambipolar case Vp=−Vn, the results obtained within the
Baranger-Stone framework are, as expected, strictly identical
to those derived earlier with the “scattering matrix” ap-
proach. Second, the equilibration and thus the saturation of
the conductance expected at the classical level has to be con-
trasted with the persisting large oscillations of the semiclas-
sical conductance. Finally and more surprisingly, we observe
that the mean of the semiclassical prediction can differ sig-
nificantly from the classical limiting value. This is illustrated,
for instance, at the rightmost panel of Fig. 2.

Understanding the oscillating pattern in the conductance
as a function of the length of the interface in Fig. 2 is rela-
tively straightforward in the ambipolar case, since the ‘‘scat-
tering matrix’’ can be interpreted as that of a rotation on the
Bloch sphere, acting on the vector composed of reflection
and transmission probability amplitudes of a given mode. In
particular convergence to a given transmission probability,
corresponding to a vector pointing at a fixed latitude, cannot
be achieved. Outside of the ambipolar case, this interpreta-
tion is no longer valid but the pattern of the conductance in
Fig. 2 is similar enough to let us believe this picture remains
qualitatively correct.

The advantage of a semiclassical description, compared,

for instance, to an exact numerical calculation of the conduc-
tance using recursive Green’s function techniques, is that it
makes it possible to discuss the expected consequence of
various modifications of the model we consider. For in-
stance, we do not expect that including a finite width dw in
the potential step �as long as dw� lB� or changing the edge-
boundary conditions will qualitatively modify the oscillating
pattern of the conductance. In the first case, the local prob-
ability transmission Eq. �2� will be somewhat smaller, actu-
ally improving the speed of classical convergence. In the
second case, the quantization condition in Eq. �6� will be
modified,23 but without affecting the basic mechanism at
play here. A geometry closer to the one used in experiments,
i.e., with the junction perpendicular to the edge of the ribbon,
would imply some diffraction at the edge-junction corner
�this aspect will be discussed in more details in Ref. 24�.
This, as more generally the inclusion of a weak disorder,
would somewhat diminish the amplitude of the conductance
oscillations and bring the average of the semiclassical results
closer to the classical conductance.

As increasing the amount of disorder could only bring the
system toward a chaotic limit, characterized by universal
conductance fluctuations around a mean given by the classi-
cal �democratic� expectation, our study indicates that within
a model of perfectly coherent electrons, the intrinsic proper-
ties of the n-p junction cannot produce the experimentally
observed plateaus. These considerations suggest the exis-
tence of inelastic processes occurring in the vicinity of the
junction, possibly reducing the coherence length �� to values
smaller than L. Further experiments, varying the ratio �� /L,
are expected to provide further insight on this issue.
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